Available online at www.sciencedirect.com

. JOURNAL OF
& scmncs@mnscr SOUND AND
A s VIBRATION
LSEVIER Journal of Sound and Vibration 282 (2005) 679—700

www.elsevier.com/locate/jsvi

An energy finite element formulation for high-frequency
vibration analysis of externally fluid-loaded cylindrical shells
with periodic circumferential stiffeners subjected to
axi-symmetric excitation

Weiguo Zhang?®, Nickolas Vlahopoulos®*, Kuangcheng Wu®

2Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, MI 48109-2145, USA
°Department of Naval Architecture and Marine Engineering/ Mechanical Engineering, University of Michigan, Ann Arbor,
MI 48109-2145, USA
Signatures and Hydrodynamics, Northrop Grumman Newport News,
Newport News, VA 23607-2770, USA

Received 21 April 2003; accepted 3 March 2004

Abstract

A hybrid method is developed for predicting the high-frequency vibration response of fluid-loaded
cylindrical shells with periodic circumferential stiffeners. In this method, the cylindrical shell is modeled
using the Energy Finite Element Analysis (EFEA) method which includes added mass and radiation effects
due to the surrounding exterior fluid medium. The joint matrices of the EFEA formulation at the location
of the periodic stiffeners are computed based on Periodic Structure (PS) theory. Thus, the periodicity effects
such as pass/stop characteristics are captured in the EFEA solution. The hybrid EFEA-PS method is used
to analyze the vibration of a fluid-loaded axisymmetric cylindrical shell with periodic circumferential
stiffeners. The flexural energy stored in each periodic section is computed. The results are compared with
the solution produced by a very dense axisymmetric Finite Element (FE) model with infinite finite elements
for the fluid domain. The good correlation indicates that the new hybrid method captures properly both the
heavy fluid effects of the exterior fluid medium and the periodicity characteristics due to periodic stiffeners.
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1. Introduction

The objective of this paper is to present the formulation and the validation of an Energy Finite
Element Analysis (EFEA) formulation that can model the high-frequency vibration of cylindrical
shells with periodic circumferential stiffeners under external heavy fluid loading. Recently, an
EFEA method for computing high-frequency vibration of structures either in vacuum or in
contact with a dense fluid has been presented [1-3]. The presence of heavy fluid loading has been
considered through added mass and radiation damping. The presence of discontinuities due to
stiffeners was also incorporated in the derivation of the EFEA formulation. The EFEA
developments were validated by comparing EFEA results to solutions obtained by very dense
conventional finite element models and solutions from classical techniques such as the Statistical
Energy Analysis (SEA) method and the modal decomposition method for bodies of revolution
[1-3]. However, the periodicity effects that are encountered in cylindrical shells with
circumferential stiffeners have not been accounted in the existing EFEA formulations.
Specifically, the distinctive vibrational characteristics associated with the pass/stop bands
frequency intervals of a periodically stiffened cylinder [4,5] are not captured. In this paper, a
hybrid method which combines the EFEA method with Periodic Structure (PS) theory is
developed for analyzing the vibration response of fluid-loaded cylindrical shells with periodic
circumferential stiffeners subjected to high-frequency circumferential excitations.

The SEA method is a mature and established analysis technique for high-frequency vibrations
[6,7]. Efforts in including the effect of periodic stiffeners in SEA are reviewed first. In SEA, a
vibro-acoustic system is divided into subsystems of similar modes. The lumped averaged energy
within each subsystem of similar modes comprises the primary SEA variable and the power
transferred between subsystems is expressed in terms of coupling loss factors. Crighton [8]
suggested that the resonance frequencies and mode shapes that included the effect of fluid loading
can be utilized in defining the dynamics of the corresponding subsystems when predicting the
dynamic response of plates under fluid loading in SEA. A method was proposed by Keane et al.
[9] to construct an enhanced probabilistic model for modeling periodic structures in SEA. The
model was based on calculating the pass bands of typical elements of the periodic structure, thus
allowing SEA to reflect the highly non-uniform distribution of natural frequencies found in the
periodic structures. Langley et al. [10] studied the high-frequency vibration transmission through
a periodically stiffened panel within the context of SEA. The periodically stiffened panel was
modeled as a damped coupled element between adjoining structural components and the
transmission and absorption coefficients were calculated on the basis of periodic structure theory.
Langley [11] also presented a derivation for a wide band frequency averaged power transmission
coefficient of a one-dimensional periodic system. When the wide band excitation was considered
to cover both pass bands and stop bands, the averaged power transmission coefficients included
the periodicity characteristics of the structure. Heavy fluid loading effects were not accounted in
any of the previous SEA formulations for periodic structures.

As an alternative formulation to the SEA method, the Energy Finite Element Analysis (EFEA)
method is a recently developed analytical tool for high-frequency structural/acoustic simulations
[1-3,12-16]. The primary variable in EFEA is defined as the time averaged over a period and
space averaged over a wavelength energy density (energy density). The governing differential
equations are developed with respect to the energy density, and a finite element approach is
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employed for the numerical solution. A joint matrix computed from the power transmission
coefficients is utilized for coupling the energy density variables across any discontinuities, such as
change of plate thickness, plate/stiffener junctions, etc. The EFEA exhibits some unique features
for a high-frequency method, such as generation of the numerical model based on geometry,
damping treatment can be applied locally and it can vary with respect to location. Results for the
energy density are computed separately for each location and spatial presentation of the result is
possible. Nevertheless, the current EFEA formulation does not capture any behavior associated
with a periodically stiffened structure. When considering the high-frequency vibration of a plate
under fluid loading, the flexural wavelength is smaller than the interval length between two
periodic stiffeners, therefore the stiffener stiffness cannot be smeared by computing an equivalent
rigidity for the plate [10]. The periodic stiffeners must be regarded as coupling components
between periodic units. In this formulation, PS theory is utilized for computing the coupling joint
matrix and for accounting for the periodicity characteristics.

A structure is considered as a periodic structure when it is composed by a number of identical
units connected in a regular pattern. A cylindrical shell with periodic circumferential stiffeners and
subjected to external fluid loading is considered in the present work. The cylindrical shell forms a
periodic structure with a basic unit consisting of a single bay of the cylindrical shell with a
circumferential stiffener at each end. A periodic structure possess the property of having some
frequency bands (pass bands) in which free wave propagation is possible and other bands (stop
bands) in which it is impossible. SenGupta [4] presented an overview of application of periodic
structure theory in the analysis of dynamic responses of periodic structures. For a flexural wave
traveling from one periodic unit to the next, the amplitudes of two points at adjacent units which
are separated by the periodic distance are related by propagation constants. The propagation
constants may be real, purely imaginary or generally complex. The pass bands or stop bands are
determined by the propagation constants. Mead [5] outlined systemically methods for analyzing
and for predicting the free and forced wave motion in continuous and periodic structures. A
formulation for computing the propagation constants of a cylindrical shell with periodic axial
stiffeners or circumferential stiffeners is presented by Mead and Bardell in Refs. [17,18],
respectively. The decay of the amplitude of the flexural vibration from one periodic unit to the
next is determined by the attenuation constants which are defined as the real part of the
propagation constants. Thus, the energy ratio between energy stored in two adjacent periodic
units can be computed from the attenuation constants. The energy ratio is employed for
computing the EFEA power transfer coefficients.

A hybrid method combining PS theory with the EFEA is presented in this paper. In this
method, all periodic units are modeled using the EFEA method which incorporates the added
mass and radiation effects due to heavy fluid [2]. The joint matrices of the EFEA formulation at
stiffeners’ locations are calculated from the energy ratio between two adjacent periodic units
based on the following procedure. The propagation constants for a cylindrical shell with periodic
circumferential stiffeners subjected to external fluid loading are evaluated from a formulation
which is based on Ref. [18] but modified to include the added mass effect due to the fluid loading.
The flexural energy ratio between two adjacent periodic units is evaluated from the attenuation
constants which correspond to the flexural wave type. An algorithm from Ref. [19] is employed
for deriving the power transfer coefficients from the energy ratio between two adjacent periodic
units. The power transfer coefficients account for the periodicity characteristics and are utilized in
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computing the joint matrices of the EFEA formulation. The energy density distribution over the
entire periodic structure is computed by the EFEA model which includes the periodicity effects
through the formulation of the joint matrices.

In order to validate the new development, the vibration of a cylindrical shell with periodically
circumferential stiffeners and subjected to circumferential excitation is analyzed. Similar
type of axisymmetric structures have been studied by others. For example, Beskos [20]
presented a numerical method for computing the low-frequency vibration of a stiffened cylindrical
shell. Using theoretical methods, Photiadis [21] examined the response of a periodically
ribbed fluid-loaded cylindrical shell with focus on the effects due to mixing of the different
wave types. In this paper, the vibration of a periodically stiffened cylinder subjected to an
external ring force is computed by the hybrid EFEA-PS method. The same structure is
analyzed by a validated axisymmetric finite element code (SONAX [22]). In SONAX, the
cylindrical shell and the periodic stiffeners are modeled with very dense structural finite
elements in order to capture the short wavelength response at high frequencies. The exterior
fluid medium is modeled with finite fluid elements and with infinite fluid elements. In the
past it has been demonstrated that FE techniques can calculate accurately the behavior of
periodic structures [23] and the fluid—structural interaction [24]. The computations are performed
at the frequency ranges where both the EFEA-PS and the FEA method are valid. The
energy ratios between the energy stored in receiving periodic units and the excited unit are
computed by the two methods and compared. The frequency range where analyses are performed
are well below the coincidence frequency and much higher than the ring frequency of the
cylindrical shell.

2. Overview of EFEA formulation for a plate structures under fluid loading

The EFEA formulation for plate structures in contact with heavy fluid on one side is
overviewed in this Section [2]. The EFEA formulation is developed by considering the flexural
displacement of a plate as a linear superposition of incoherent waves associated with any two
orthogonal directions x and y [1]:

Wy = (Axe—iy’\.x + Bxei)'x)()eia)l’ Wy = (Aye—iyyy + Byeiyyy)eiwt’ (1)

where A4y, 4y, By, By are constants associated with the waves in x and y directions, 7, and y,, are the
corresponding complex flexural wavenumbers of the fluid-loaded plate. The flexural wavenumbers
are defined as [2]

vxzv,ﬂ(l—ig), vyzvyl(l—i@, 2
where

Mefy
Px1 =Vy1 = \ 5 wz, M = Ndamp + Nrag- 3)
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The effective mass mer and the radiation damping 7,4 are evaluated:

c
'0 Grad: fngW
mliy—L |, r<f OMef
Mefr = 22| 77 = 4
eff = m kf —k Nrad = p , f>fC;
2 2
m, f>fcs my [k _kf

where D is the bending stiffness of the plate, m = ph is the plate surface mass density, 14, 1S the
structural damping factor, # is the total damping factor, p is the mass density of the fluid, k is the
flexural wavenumber of the plate in vacuum, k is the acoustical wavenumber of the fluid medium,
014 18 the radiation efficiency considering edge and corner effect for a finite plate [25,26], and f - is
the coincidence frequency. Subscript “‘eff ” indicates the added mass effect.

An expression for the energy density and the intensity is derived for each one of the two
orthogonal waves. By neglecting higher-order damping terms, the time and space averaged energy
density and intensity become

e.) = g [(Vil 4 ml;ff a,2> < L @Pax 4 Bie‘"/z)’«’ﬂxﬂ, )
() = Dyilw( A2/ Drax _ Bie(n/zmlx), 6)
le,) = % [(“/fn n mle)ff wz) ( A2y 4 Bie(n/zwﬂyﬂ, )
(£y> — Dyilw<AJ2ve—(n/2)vy1y _ Bie(nﬂ)vyly)_ (8)

The averaged energy density and intensity of the flexural waves constitute the primary energy
variables of the EFEA formulation. The vibration of the plate is considered as incoherent since at
high frequencies the flexural wavelength is small compared to the dimension of the plate and the
multiple reflections from the boundaries create an incoherent field. This assumption is equivalent
to the SEA assumption of considering the energy stored in a group of similar modes as a
summation of the energy stored in each individual mode. Therefore, the total energy density and
the total intensity at a point are derived as the summation of the energy variables associated with
each one of the members of the orthogonal basis that represents the vibration:

D ' ; :
(e) = (e,) +(e)) = 3 [Vil (Aie—(nﬂ)mx + Bie(ﬂ/z)/xlx) + yil (Aie—(n/z)yyly + Bie(n/Z)yﬂy)}, 9)

) = (L)i+ (I,)j = Do ['yil (Aie —/2ax _ Bie(n/z)v,HX>i +7 ( A2y Biew/z)w> j} ,
(10)

By observing the similarities between Eqgs. (11) and (12), a relationship between the energy density
and the intensity is derived:

2
] (i
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where (¢y)or = 2 % v/ (D/megr)w?, is defined as the effective group velocity for the fluid-loaded
plate. The EFEA governing differential equation for a fluid-loaded plate is derived by considering
a power balance at the steady state over a differential control volume of the plate [27], the
relationship between dissipated power and energy stored on the plate and the relationship between
energy density and intensity (Eq. (11)):

2
c
Do 520y 1 o) = (11,,). (12)
nw
A finite element formulation is employed for solving Eq. (12) numerically. The element level
system of equations are

[Egpl{e} = (F°} +{Q°), (13)

where superscript e indicate element-based quantities, {e‘} is the vector of nodal values of the
energy density at the nodes of a finite element, [ESy] is the effective system matrix for the element
which includes the heavy fluid effect, {F*¢} is the vector of external input power at the nodal
locations of the element, and {Q°} is the vector of the internal power flow across the element
boundary which provides the mechanism for assembling the global system of equations for
adjacent elements and for connecting elements across discontinuities. At the boundaries of the
plates between discontinuities, the energy density is discontinuous and the coupling in the global
system of equations is achieved by accounting for continuity in the power flow. The vector of
internal power flow {Q} is expressed as a product between the joint matrix and the nodal values of
the energy density. The joint matrix represents the power transmission mechanism across the
discontinuity:

Q, e,

51 i 851

o (=Valy u b (14)
gn+ 1 elm+ 1

where i and j refer to the two elements connected at the discontinuity, » and # + 1 indicate the two
nodes of the i element at the joint, m and m + 1 indicate the two nodes of the j element at the joint,
[J eff]; is the joint matrix which captures the mechanism of power transfer between elements i and j
across the discontinuity. In this paper, the joint matrix is computed based on PS theory and
accounts for the heavy fluid loading effect. Introducing Eq. (14) into Eq. (13) results in

[ES): D\ e F
( + [JCeff]j> { {(:’j} } — { {Fg}] }, (15)

where [Egy],, [Egy]; are the element matrices for the ith and jth element, {e'}, {¢/} are vectors
containing all the noddl degrees of freedom for element i and j, respectively. [JCef]; is a coupling
matrix comprised by the coefficients of [J eff] positioned in the appropriate locatlons The
assembly of the element matrices between elements with no discontinuities is performed in the
conventional finite element manner without any coupling matrices since in this case, the energy

[Eerr);
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density is continuous at the nodes between elements. The final system of EFEA equations is

[Ea] + Y Catl| tl0)) = 111, (16)

where ) indicates the summation of all the coupling matrices that correspond to all the
discontinuities in the model.

3. Derivation of joint matrix for a periodic stiffener from periodic structure theory

The power transfer coefficients at the locations of the periodic stiffeners are derived based on
PS theory. The derivation is performed by considering axisymmetric excitation only, therefore
only axisymmetric wave motion need to be considered in the cylindrical shell. The wave solution
for the axisymmetric vibration in a periodically stiffened cylindrical shell under external fluid
loading is presented first, and the associated propagation constants are derived. The propagation
constants are employed for determining appropriate values for the power transfer coefficients
between adjacent periodic units at the locations of the stiffeners. Thus, the joint matrices of the
EFEA formulation corresponding to the periodic stiffeners include the periodic effects.

3.1. Wave solution for the axisymmetric vibration of a cylindrical shell subjected to external fluid
loading

The equations of motion for the axisymmetric vibration of an externally fluid-loaded cylindrical
shell (Fig. 1(a)) are [28]

Ech @_ 62_u+ Echy %_ (17)
A—ox P T v)Rox
“Z'LXU Fluid
Kl i - i K
@
N Y M <
0» ’0 LJ\L
i y

®) -4 Chn

Fig. 1. (a) A periodic ring stiffened cylindrical shell immersed into a dense fluid and the corresponding coordinate
system. (b) One periodic section (including one bay cylindrical shell and a half stiffener attached circumferentially at
each end).



686 W. Zhang et al. | Journal of Sound and Vibration 282 (2005) 679-700

By Qu BN Sw Eh . 0w (18)
(I =v3)R 0x  12(1 —v?) ox* (1_v2)R2W Pslt 52 = TPz=0

where u(x,t), w(x,t) are the longitudinal and flexural displacements of the cylindrical shell,
respectively; R is the radius of the shell; E. is the complex modulus of elasticity which is of the
form E(1 +1in); n is the total damping factor defined in Section 2; p, is the mass density of the
shell; v is the Poisson ratio; £ is the shell thickness; and p._, is the pressure exerted by the external
fluid on the vibrating shell.

The wave solutions for the displacements are [18]

6 6
u=>y A, w=> Cehe”, (19,20)

s=1 s=1
where Ag, s =1,...,6, are the eigenvalues of the characteristic equation for the determinant of

Egs. (17) and (18):
20(1 —v? 2
22 4220 2V) iy

s E, R

5 5 =0. (21)
Q A i h_ 24 2(py)err(1 — v7) w2

R R 6" E,

The effective mass density (p,).q 1S introduced in the equations due to the fluid loading effect.
Since at high frequencies the general effect of the fluid loading on a cylindrical shell is similar to
the fluid loading effect on a plate [29] and since the dispersion relation for a particular wave guide,
such as the axisymmetric wave, of a cylindrical shell is nearly coinciding with planar solutions at
frequencies higher than the ring frequency [29], the effective mass density of a flat plate under fluid
loading is utilized in Eq. (21):

P

(ps)eff = pS 1 + -
NG

where ky is the flexural wave number of the plate in vacuum, p is the fluid mass density, and k is
the acoustic wavenumber in the fluid medium.

For each eigenvalue /; of Eq. (21), a relationship between the corresponding wave amplitudes
As and C; is established from the characteristic equations:

(22)

{311(%) Bl2(}vs):| { Ag } _ { 0 } oo 6 (23)
B>i1(Zs) Bn(iy) ] L C; 0)’ T
resulting in
_ By ., _
Y= T BuGy) Cy = Y(4s)Cs. (24)

The expressions of Bji(4y), Bia(4s), Bai(4s), Boo(4s) are derived from Eq. (21). Thus, both
displacements # and w can be expressed in terms of one set of wave amplitudes C based on
Egs. (19), (20), and (24).
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3.2. Derivation of propagation constant from periodic structure theory

The edge displacements and force/moment resultants acting on the edges of a periodic section
(Fig. 1(b)) are related by the equation [18§]

(N -N
S )
M -M
=t (29)
u u
w w
(W' ) x=L w x=0

where u is defined as a propagation constant. The force and moment resultants along the two
circumferential stiffened edges can be expressed in terms of the displacement fields # and w and
include the contribution from both the shell and the half stiffener. The corresponding expressions

are [18]
:_%%%(%WHOA?—;”), @7)

where A is the cross-section area of the stiffener, p, is the stiffener mass density, Ey is the modulus
of elasticity of the stiffener, /.. is the moment of inertia of the stiffener, I, is the polar moment of
inertia of the stiffener, and b is the eccentricity of the stiffener. In Egs. (26)—(28), the contribution
of the shell term at x = 0 is opposite in sign to that at x = L.
By substituting the displacement expressions from Eqgs. (19), (20) and (24), and the force and
moment expressions (26)—(28) into the periodic relationship provided by Eq. (25) results in
[K_LI{Cs} = e“[K_0{Cy}, (29)

where [K_0] is defined as a 6 x 6 structural property matrix of the periodic unit at x = 0 and is
expressed as

1) f1(A) f1(43) f1(Za)  f1(As)  f1(Ze)]
o) fo(Aa) fo(43) fa(he) [fo(ds)  fo(le)
f3() f3(A) f3(A) f3(he) f3(4s)  f3(4e)

() Y2 Y(h) Y Y(is)  Ylde)
1 1 1 1 1 1

j~1 /12 23 24 }VS /l(,

[K_0] = (30)
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and [K_L] is defined as a 6 x 6 structural property matrix of the periodic unit at x = L and is

expressed as

(g1t gi(2)et gi(ha)e™t gi(Ja)e™ gi(As)e™t gi(Ae)e™" ]
gl ga(Aa)e®t gy(Aa)eml ga(Aa)e™t  gy(As)e™l  ga(dg)e™r
K 1] | GOV G0 Ut g0t et giGoet |
Yt Yha)et Yzt yddet yis)est pde)e’t
oML el oL ML sl ol
Jehl Joelol Jaeal Jaetl JsesL Jeeol
{C,} is the vector containing the amplitude coefficients of the flexural displacements,
( C,
&)
G
{Cs} = s (32)
Cs
Cs )

The detail expressions of functions f; and g; are provided in Appendix A. The characteristic
equation for computing the propagation constants is

[KNCs} = e"{Cs}, (33)

where [K] = [K_0]"![K_L]. The propagation constants u are obtained from the eigenvalues e* of
matrix [K] [18].

Considering the amplitudes |V;(x)| and |V;1(x)| of the velocity of the axisymmetric response
along the length of two adjacent periodic units, respectively, the time averaged kinetic energy
stored in the two periodic units are

KE; = 4 p2nRAVi(x)|"dx ), KE;j = 4 P2 RAV i1 (x)7dx ). (34,35)
0 0
The velocities at the two adjacent periodic units are related by the propagation constant

|V ip1(x)| = e™4W| 7,(x)|. Therefore, the energy ratio between two adjacent units (ERpg) based on
the periodic structure theory is computed as

KEi1 _ Jy p2nRA(E OV (x)) dx

(ereal(,u))Z‘
KE; fOL p2nRA|V i(x))? dx

ERps =

(36)

The real part of the complex propagation constant comprises the attenuation constant.

The power transfer coefficients associated with the bending energy transmitted and reflected
from the periodic stiffeners are evaluated from the energy ratio ERps computed by the periodic
structure theory for two adjacent units. The attenuation constant corresponding to the flexural
wave is employed for computing the energy ratio ERpg. An algorithm [19] developed in the past
for computing the power transfer coefficients in EFEA applications from the energy ratio between
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two adjacent components is also employed here in order to compute appropriate power transfer
coefficients from the energy ratio evaluated by the periodic structure theory. According to the
algorithm presented in Ref. [19], the EFEA model of the two adjacent components is utilized
along with the known value of the energy ratio stored in the two components for computing the
corresponding power transfer coefficients. An EFEA model comprised of two adjacent periodic
cylindrical bays is constructed. One bay is defined as the excited section and the other comprises
the receiving bay. The total energy stored at two bays is computed by the EFEA formulation
while the EFEA system matrix is a function of the unknown power transfer coefficients. Then, the
energy ratio between the two bays is defined as a function of the unknown power transfer
coefficients. By accounting that the total power flow is constant, the two unknown power transfer
coefficients are reduced to one unknown r:

ER(}") _ E(r)receivingbay ) (37)
E(F)excitedbay
An iterative algorithm [19] is employed for computing the power transfer coefficients based on the
energy ratio of two adjacent units computed by the PS theory:
ER(r)""V — ERpg ptD)

ER(\™D — ER(p)™ — r0D — (38)
where superscript n,(n + 1) represent the consecutive iteration steps. The values of the power
transfer coefficients computed by a diffuse wave assumption [30] are utilized in defining the initial
value for coefficient r. The algorithm is considered to converge when the difference

ER(r) — ERpg
ERps

is smaller than a user-defined limit UL. The derived power transfer coefficients incorporate the
periodic characteristics of the periodic circumferential stiffeners. The power transfer coefficients
are utilized in the computation of the joint matrix [2,14]

Wearll = (7] — FrenlNU] + [ren )™ /B b1, dB, (40)

<UL (39)

where ¢;, ¢; are Lagrangian basis functions, B is the boundary area between elements i and j at the
joint, and [Teff]; is a matrix comprised by the power transfer coefficients. Since the joint matrices
between all the elements at the periodic stiffeners contain the periodicity effects, the overall EFEA
global system of equations which includes all the joint matrices also accounts for the periodic
effects.

4. Validation

In order to validate the developed hybrid EFEA-Periodic Structure formulation (EFEA-PS),
two different configurations of a fluid-loaded cylindrical shell with periodic stiffeners are
analyzed. The radius of the cylindrical shell is 1.5 m and the distance between stiffeners in the two
configurations is 0.38 and 1 m, respectively. Two different distances between stiffeners are utilized
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in order to generate the stop bands at different frequency ranges in the two applications. The
properties of the stiffeners are summarized in Table 1. The material properties for the structure
and the surrounding fluid medium are listed in Tables 2 and 3. The EFEA model for the cylinder
with 0.38 m distance between stiffeners is presented in Fig. 2. The model is comprised by 320
structural elements, 540 plate—plate joints, and 220 plate-periodic stiffener-plate joints. The results
from the EFEA-PS analyses are compared to the solution computed by an established
axisymmetric code with structural finite elements and acoustic infinite finite elements (SONAX
[22]). In SONAX, the cylindrical shell and the periodic stiffeners are modeled with structural finite
elements. The fluid medium is modeled with fluid finite elements and with infinite fluid finite
elements. The fluid-structure interaction is accounted by the interface finite elements. The
SONAX model includes 498 structural elements, 2331 finite fluid elements, 333 infinite fluid
elements and 333 interface elements. The finite element mesh satisfies the condition that 10
elements are included in one wavelength of deformation at frequency up to 5000 Hz. The EFEA
and the SONAX models for the cylinder with stiffeners placed 1 m apart are constructed in a
similar manner. In order to process and compare the results, the cylindrical structures are divided
into 10 periodic sections by 11 stiffeners (Fig. 2). The overall length of the two cylindrical
structures differs between the two configurations since the number of periodic sections is the same
but the distance between stiffeners differs. A circumferential excitation is applied at the left end of
the cylindrical shell (periodic unit 1). Analyses are performed over the one-third octave bands
between 2500 Hz and 5000 Hz. The analyzed frequencies are much above the ring frequency
(around 540 Hz) and well below the coincidence frequency ( around 18 000 Hz). In the frequency

Table 1
Cross-sectional properties of the stiffener and the cylinder

Stiffener A (m?) 1.1 x 1073
I, (m?) 6.06 x 107°
I.. (m%) 2.867 x 1077

Cylinder h (m) 1.27 x 1072

Table 2
Material properties of steel cylinder

Young’s modulus (Pa) 2.07E+11
Density (kg/m®) 7800.0
Poisson’s ratio 0.333
Damping loss factor 0.01
Longitudinal wave speed (m/s) 5464.0

Table 3
Properties of the fluid medium (water)

Density (kg/m®) 1000.0
Sound speed (m/s) 1500.0
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Fig. 2. EFEA model of the cylindrical shell and unit section division.
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Fig. 3. The flexural wave attenuation constant of the circumferentially stiffened cylindrical shell with stiffeners spaced
at 0.38 m.

range of analysis, the fluid loading effect is important while the curvature effect of the cylinder can
be neglected.

The results associated with the cylinder with stiffeners spaced at 0.38 m are presented first. The
corresponding attenuation constant is presented in Fig. 3. It can be observed that there are two
stop bands within the analyzed frequency range. The power transfer coefficients that are
computed from the attenuation constant of the PS theory are presented in Fig. 4. The periodic
characteristics are accounted in the values of the power transfer coefficients which are
incorporated in the computation of the joint matrix in the EFEA formulation. The power
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Fig. 5. Energy ratio between periodic unit 2/periodic unit 1: - - A- -, SONAX; —A—, EFEA-PS; - - (- -, EFEA.

transfer coefficients are computed both at distinct frequencies and also as averaged values for each
one-third octave band. The EFEA computations are performed both at the center frequencies of
the one-third octave bands and at distinct frequencies. The EFEA analyses are performed at
distinct frequencies in order to demonstrate better the stop bands in the EFEA formulation.
Typically, in high-frequency computations analyses are performed in one-third octave bands.
FEA analyses are performed at ~6 Hz frequency intervals throughout the entire frequency range
of analysis. Energy variables are computed from the displacement results of the FEA analyses and
they are also frequency averaged over each one-third octave in order to be compared properly
with the EFEA frequency averaged results. The ratio computed by both methods between the
energy stored in a receiving unit over the energy stored in the unit where the excitation is applied is
presented in Figs. 5-8 for units 2,3, 8 and 9, respectively. In this manner results are presented both
for units close to the excitation and for units far from the excitation. Good correlation is observed
between the FEA analysis and the EFEA-PS method. Results computed by the EFEA method
with power transfer coefficients that account for the stiffener and the fluid loading effects but not
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account for the periodicity of the structure are also presented. As it can be observed a
considerably lesser amount of power is transferred to the receiving units if the periodic effects are
not taken into account. It can be observed that the EFEA-PS method captures well both the fluid-
loading effect and the periodic characteristics. For units 8§ and 9 results computed by the FEA and
the EFEA-PS at individual frequencies are presented in Figs. 9 and 10. In this manner it can be
observed that the stop band regions are captured in the EFEA-PS results. In order to further
investigate the validity of the EFEA-PS method, the location of the excitation is moved from unit
1 to unit 3. Analyses are repeated by the SONAX and the hybrid EFEA-PS method. Frequency
averaged results over a one-third octave band for Sections 9 and 10 are presented in Figs. 11 and
12. The results computed by FEA and the EFEA-PS correlate well, while the EFEA results that
do not include the periodic effects predict a considerably lower power transfer. Results from the
FEA and the EFEA-PS computations are presented for the periodic units 9 and 10 for distinct
frequencies in Figs. 13 and 14 in order to demonstrate how the stop bands information is captured
by the EFEA-PS solution.
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Fig. 9. Energy ratio between periodic unit 8/periodic unit 1: ——, SONAX; - - - - , EFEA-PS.
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Fig. 10. Energy ratio between periodic unit 9/periodic unit 1: ——, SONAX; - - - - , EFEA-PS.



W. Zhang et al. | Journal of Sound and Vibration 282 (2005) 679-700 695

Ratio (db)

-15
TR PR o [
""""" -
-20 - : - .
2500 3000 3500 4000 4500 5000

Frequency (Hz)

Fig. 11. Energy ratio between periodic unit 9/periodic unit 3: - - A- -, SONAX; —A—, EFEA-PS; - - O- -, EFEA.

>

Ratio (db)
N
o

-15

-20
2500 3000 3500 4000 4500 5000

Frequency (Hz)
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Finally, results are presented for the cylindrical structure with stiffeners placed 1 m apart. The
flexural wave attenuation constant is presented in Fig. 15. Four stop band ranges can be observed
in this case due to different spacing between the stiffeners. Excitation is applied on unit 1 and
results for the two periodic units 9 and 10, which are farthest away from the excitation, are
presented in Figs. 16 and 17. The same number of stop-bands is observed between the two
solutions, and the stop bands occur in similar frequency ranges between the two methods.

5. Conclusions

A hybrid method that combines the EFEA and the Periodic Structure theory for analyzing the
high-frequency vibration of a fluid-loaded cylindrical shell with periodic circumferential stiffeners



696 W. Zhang et al. | Journal of Sound and Vibration 282 (2005) 679-700

-10

-15

Ratio (db)

-20

-25

-30

-35
2100 2400 2700 3000 3300 3600 3900 4200 4500 4800 5100
Frequency (Hz)
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Fig. 14. Energy ratio between periodic unit 10/periodic unit 3: ——, SONAX; - - - - , EFEA-PS.

under an axisymmetric excitation is presented. The added mass and the radiation effects are
included in the derivation of the EFEA formulation. The fluid loading effect and the effect from
the periodic stiffeners are accounted in the derivation of the power transfer coefficients and in the
derivation of the joint matrices in the EFEA. The new hybrid formulation and its implementation
is validated by comparing EFEA results to solutions obtained by very dense conventional FEA
models. Cylindrical shells with periodic circumferential stiffeners are analyzed. The energy ratio
between receiving periodic units and the excited unit are computed by both FEA and EFEA-PS
methods. Results from the EFEA solution with power transfer coefficients that do not account for
the periodicity effects are also presented. Overall, good correlation is observed between the
axisymmetric FEA results and the EFEA-PS solution. The values for the predicted power transfer
between receiving periodic units and the excited one are similar between the two methods. The
same number of stop bands and at similar frequencies are also predicted by the two methods.
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Finally, the difference between the EFEA-PS and the EFEA results that do not account for
periodicity in the derivation of the power transfer coefficients demonstrates the importance of
including the periodic effects in the EFEA computations.
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Appendix A. Definition of entries in structural property matrix

The detail expressions for functions f; and g; (i = 1, 3) are

: h
£10) = = =0 (0 + ) + oo AP ) + b2,
N 1 (EoA
100 == s i+ (G = ot
E. ,oo 1

£ =y g 80+ (= 0y b))

— VZ)
) Ech 1 2
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where s = 1, 6.
All the terms in the above equations have been defined within Section 3.
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